Computer Methods and Programs in Biomedicine A Data Mining Approach for Diagnosis of Coronary Artery Disease

نویسندگان

  • Roohallah Alizadehsani
  • Jafar Habibi
  • Mohammad Javad Hosseini
  • Hoda Mashayekhi
  • Asma Ghandeharioun
  • Reihane Boghrati
  • Behdad Bahadorian
  • Zahra Alizadeh Sani
چکیده

Cardiovascular diseases are very common nowadays and are one of the main reasons of death. Being among the major types of these diseases, correct and in time diagnosis of Coronary Artery Disease (CAD) is very important. The best and most accurate CAD diagnosis method by now is recognized as Angiography, which has many side effects and is costly. Thus researchers are seeking for inexpensive, though still accurate, methods. Existing studies have used several features in collecting data from patients, while applying different data mining algorithms to increase accuracy. In this paper, a data set, called Z-Alizadeh Sani, is introduced which utilizes several new and effective features for CAD diagnosis, as well as a number of important and previously known ones. Also, a feature creation method is proposed in order to effectively increase the accuracy. The data set used in this paper is gathered from 303 random visitors to Tehran’s Shaheed Rajaei Cardiovascular, Medical and Research Center, who had been suspicions of having CAD. Among the samples, 87 are healthy and 216 have CAD. Several data mining methods have been applied on the data set and a maximum 94.08% accuracy is achieved in diagnosing CAD, which is higher than the known approaches in the literature. ——— 1 Software Engineering, Department of Compute Engineering, Sharif University of Technology, Tehran, Iran 2 Tehran University of Medical Science, Tehran, Iran  Corresponding author: Tel.: +989153160452 Email address: [email protected] Computer

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of Coronary Artery Disease using Neuro-fuzzy-based Method

Background & Aim: Coronary artery disease is one of the most common diseases in different societies. Coronary angiography is established as one of the best methods for diagnosis of this disease. Angiography is an invasive and costly method. Furthermore, it is associated with risks such as death, heart attack, and stroke. Thus, this study introduces a neuro-fuzzy-based method which can help the ...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

Diagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search

In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012